Tuesday 19 March 2013

Indoor Air Pollution: An Introduction for Health Professionals

Introduction

Indoor air pollution poses many challenges to the health professional. This booklet offers an overview of those challenges, focusing on acute conditions, with patterns that point to particular agents and suggestions for appropriate remedial action.
The individual presenting with environmentally associated symptoms is apt to have been exposed to airborne substances originating not outdoors, but indoors. Studies from the United States and Europe show that persons in industrialized nations spend more than 90 percent of their time indoors1. For infants, the elderly, persons with chronic diseases, and most urban residents of any age, the proportion is probably higher. In addition, the concentrations of many pollutants indoors exceed those outdoors. The locations of highest concern are those involving prolonged, continuing exposure - that is, the home, school, and workplace.
The lung is the most common site of injury by airborne pollutants. Acute effects, however, may also include non-respiratory signs and symptoms, which may depend upon toxicological characteristics of the substances and host-related factors.
Heavy industry-related occupational hazards are generally regulated and likely to be dealt with by an on-site or company physician or other health personnel2. This booklet addresses the indoor air pollution problems that may be caused by contaminants encountered in the daily lives of persons in their homes and offices. These are the problems more likely to be encountered by the primary health care provider.
Etiology can be difficult to establish because many signs and symptoms are nonspecific, making differential diagnosis a distinct challenge. Indeed, multiple pollutants may be involved. The challenge is further compounded by the similar manifestations of many of the pollutants and by the similarity of those effects, in turn, to those that may be associated with allergies, influenza, and the common cold. Many effects may also be associated, independently or in combination with, stress, work pressures, and seasonal discomforts.
Because a few prominent aspects of indoor air pollution, notably environmental tobacco smoke and "sick building syndrome," have been brought to public attention, individuals may volunteer suggestions of a connection between respiratory or other symptoms and conditions in the home or, especially, the workplace. Such suggestions should be seriously considered and pursued, with the caution that such attention could also lead to inaccurate attribution of effects. Questions listed in the diagnostic leads sections will help determine the cause of the health problem. The probability of an etiological association increases if the individual can convincingly relate the disappearance or lessening of symptoms to being away from the home or workplace.

Health Problems Caused By HEAVY METALS: AIRBORNE LEAD AND MERCURY VAPOR

Key Signs/Symptoms of
Lead Poisoning in Adults...
  • gastrointestinal discomfort/constipation/anorexia/nausea
  • fatigue, weakness
  • personality changes
  • headache
  • hearing loss
  • tremor, lack of coordination
... and in Infants and Small Children
  • irritability
  • abdominal pain
  • ataxia
  • seizures/ loss of consciousness
  • (chronic) learning deficits
  • hyperactivity, reduced attention span
Key Signs/Symptoms of Mercury Poisoning
  • muscle cramps or tremors
  • headache
  • tachycardia
  • intermittent fever
  • acrodynia
  • personality change
  • neurological dysfunction
Diagnostic Leads
  • Does the family reside in old or restored housing?
  • Has renovation work been conducted in the home, workplace, school, or day care facility?
  • Is the home located near a busy highway or industrial area?
  • Does the individual work with lead materials such as solder or automobile radiators?
  • Does the child have sibling, friend, or classmate recently diagnosed with lead poisoning?
  • Has the individual engaged in art, craft, or workshop pursuits?
  • Does the individual regularly handle firearms?
  • Has the home interior recently been painted with latex paint that may contain mercury?
  • Does the individual use mercury in religious or cultural activities?
Remedial Action
Wet-mop and wipe furniture frequently to control lead dust. Have professional remove or encapsulate lead containing paint; individuals involved in this and other high exposure activities should use appropriate protective gear and work in well-ventilated areas. Do not burn painted or treated wood.
Comment
Airborne Lead
Most health professionals are aware of the threat of lead (Pb) toxicity, particularly its long term impact on children in the form of cognitive and developmental deficits which are often cumulative and subtle. Such deficits may persist into adulthood48. According to the American Academy of Pediatrics, an estimated three to four million children in the U.S. under age six have blood lead levels that could cause impaired development, and an additional 400,000 fetuses are at similar risk49.
Lead toxicity may alternatively present as acute illness. Signs and symptoms in children may include irritability, abdominal pain, emesis, marked ataxia, and seizures or loss of consciousness. In adults, diffuse complaints -- including headache, nausea, anorexia (and weight loss), constipation, fatigue, personality changes, and hearing loss -- coupled with exposure opportunity may lead to suspicion of lead poisoning.
Lead inhibits heme synthesis. Since interruption of that process produces protoporphyrin accumulation at the cellular level, the standard screening method is investigation of blood lead (PbB) levels which reveal recent exposure to lead. Acute symptomology in adults is often associated with PbB at levels of 40 �g/dl or higher. There is good evidence for adverse effects of lead in very young children at much lower levels.50,51 The Centers for Disease Control and Prevention has set 10 �g/dl as the level of concern52. Increased maternal Pb exposure has also been deemed significant in pregnancy, since an umbilical cord PbB of greater than 10 µg/dl has been correlated with early developmental deficits. If sufficiently high PbB levels are confirmed, chelation therapy may be indicated. Suspected low level lead contamination cannot be accurately identified by a erythrocyte protoporphyrin (EP) finger-stick test, but requires blood lead analysis.
Lead poisoning via ingestion has been most widely publicized, stressing the roles played by nibbling of flaking paint by infants and toddlers and by the use of lead-containing food ware (glass, and soldered metal-ceramic ware) by adults. Lead dust flaking or "chalking" off lead painted walls generated by friction surfaces is a major concern. Airborne lead, however, is also a worrisome source of toxicity. There is no skin absorption associated with inorganic lead.
Airborne lead outdoors, originating chiefly from gasoline additives, has been effectively controlled since the 1980s through regulation at the federal level. Much of this lead still remains in the soil near heavily trafficked highways and in urban areas, however, and can become airborne at times. It may enter dwellings via windows and doors, and contaminated soil can also be tracked inside.
Indoors, the chief source is paint. Lead levels in paints for interior use have been increasingly restricted since the 1950s, and many paints are now virtually lead free. But older housing and furniture may still be coated with leaded paint, sometimes surfacing only after layers of later, non-lead paint have flaked away or have been stripped away in the course of restoration or renovation. In these circumstances, lead dust and fumes can permeate the air breathed by both adults and children.
Additional sources of airborne lead include art and craft materials, from which lead is not banned, but the U.S. Consumer Product Safety Commission (CPSC) requires its presence to be declared on the product label if it is present in toxic amounts. Significant quantities are found in many paints and glazes, stained glass, as well as in some solder. Hazardous levels of atmospheric lead have been found at police and civilian firing ranges. Repair and cleaning of automobile radiators in inadequately ventilated premises can expose workers to perilous levels of airborne lead. The use of treated or painted wood in fireplaces or improperly vented wood stoves may release a variety of substances, including lead and other heavy metals, into the air.
Mercury Vapor
While old paint has been the most publicized source of airborne heavy metal (i.e., lead), new paint has emerged as a concern as well. A 1990 report detailed elevated levels of mercury in persons exposed to interior latex (water-based) paint containing phenylmercuric acetate (PMA)53. PMA was a preservative that was used to prolong the product's shelf life.
Initial action by the U.S. Environmental Protection Agency resulted in the elimination of mercury compounds from indoor latex paints at the point of manufacture as of August 1990, with the requirement that paints containing mercury, including existing stocks originally designed for indoor use, be labeled or relabeled "For Exterior Use Only". As of September 1991, phenylmercuric acetate is forbidden in the manufacture of exterior latex paints as well. Latex paints containing hazardous levels of mercury may still remain on store shelves or in homes where they were left over after initial use, however.
An additional matter of concern, recently noted by the CPSC, is the sprinkling of mercury about the home by some ethnic/religious groups54. According to the CPSC, mercury for this purpose is purveyed by some herbal medicine or botanical shops to consumers unaware of the dangers of the substance.

Health Problems Caused By SICK BUILDING SYNDROME

Key Signs/Symptoms
  • lethargy or fatigue
  • headache, dizziness, nausea
  • irritation of mucous membranes
  • sensitivity to odors
Diagnostic Leads
  • Are problems temporally related to time spent in a particular building or part of a building?
  • Do symptoms resolve when the individual is not in the building?
  • Do symptoms recur seasonally (heating, cooling)?
  • Have co-workers, peers noted similar complaints?
Remedial Action
Appropriate persons -- employer, building owner or manager, building investigation specialist, if necessary state and local government agency medical epidemiologists and other public health officials -- should undertake investigation and analysis of the implicated building, particularly the design and operation of HVAC systems, and correct contributing conditions. Persistence on the part of individuals and health care consultants may be required to diagnose and remediate the building problems.
Comment
The term "sick building syndrome" (SBS), first employed in the 1970s, describes a situation in which reported symptoms among a population of building occupants can be temporally associated with their presence in that building. Typically, though not always, the structure is an office building.
Generally, a spectrum of specific and nonspecific complaints are involved. Typical complaints, in addition to the signs and symptoms already listed, may also include eye and/or nasopharyngeal irritation, rhinitis or nasal congestion, inability to concentrate, and general malaise-complaints suggestive of a host of common ailments, some ubiquitous and easily communicable. The key factors are commonality of symptoms and absence of symptoms among building occupants when the individuals are not in the building.
Sick building syndrome should be suspected when a substantial proportion of those spending extended time in a building (as in daily employment) report or experience acute on-site discomfort. If is important, however, to distinguish SBS from problems of building related illness. The latter term is reserved for situations in which signs and symptoms of diagnosable illness are identified and can be attributed directly to specific airborne building contaminants. Legionnaires' Disease and hypersensitivity pneumonitis, for example, are building related illnesses.
There has been extensive speculation about the cause or causes of SBS. Poor design, maintenance, and/or operation of the structure's ventilation system may be at fault55. The ventilation system itself can be a source of irritants. Interior redesign, such as the rearrangement of offices or installation of partitions, may also interfere with efficient functioning of such systems.
Another theory suggests that very low levels of specific pollutants, including some discussed in the preceding pages, may be present and may act synergistically, or at least in combination, to cause health effects. Humidity may also be a factor: while high relative humility may contribute to biological pollutant problems, an unusually low level -- below 20 or 30 percent -- may heighten the effects of mucosal irritants and may even prove irritating itself. Other contributing elements may include poor lighting and adverse ergonomic conditions, temperature extremes, noise, and psychological stresses that may have both individual and interpersonal impact.
The prevalence of the problem is unknown. A 1984 World Health Organization report suggested that as many as 30 percent of new and remodeled buildings worldwide may generate excessive complaints related to indoor air quality56. In a nationwide, random sampling of U.S. office workers, 24 percent perceived air quality problems in their work environments, and 20 percent believed their work performance was hampered thereby57.
When SBS is suspected, the individual physician or other health care provider may need to join forces with others (e.g., clinicians consulted by an individual's co-workers, as well as industrial hygienists and public health officials) to adequately investigate the problem and develop appropriate solutions.

Health Problems Caused By Two Long-Term Risks: ASBESTOS and RADON

Asbestos and radon are among the most publicized indoor air pollutants. Both are known human carcinogens. Their carcinogenic effects are not immediate but are evident only years, even decades, after prolonged exposure.
Asbestos
Once widely used in structural fireproofing, asbestos may be found predominantly in heating systems and acoustic insulation, in floor and ceiling tiles, and in shingles in many older houses. It was formerly used in such consumer products as fireplace gloves, ironing board covers, and certain hair dryers.
When asbestos-containing material is damaged or disintegrates with age, microscopic fibers may be dispersed into the air. Over as long as twenty, thirty, or more years, the presence of these fibers within the lungs may result in asbestosis (asbestos-caused fibrosis of the lung, seen as a result of heavy occupational exposure)58, lung cancer and pleural or peritoneal cancer, or mesothelioma59. For lung cancer, the effect of tobacco smoking in combination with asbestos exposure appears to be synergistic by approximately fivefold60. Occupational exposure may also be associated with increased risk of gastrointestinal malignancies. Attention should be focused on those populations with continual exposure and documented health effects, e.g. maintenance workers.
Products and materials containing asbestos are not necessarily so labeled. Construction professionals or state or local environmental agencies may inspect and analyze suspect materials. Manufacturers of particular products may also be able to supply information.
The risk of disease depends on exposure to airborne asbestos fibers. Average levels in buildings are low, and the risk to building occupants is therefore low.
Removal of asbestos is not always the best choice to reduce exposure. The EPA requires asbestos removal only in order to prevent significant public exposure and generally recommends an in-place management program when asbestos has been discovered and is in good condition61.
Radon
Radon is the second leading cause of lung cancer, following smoking. Radon is odorless, colorless, and tasteless. It is a naturally occurring radioactive gas resulting from the decay of radium, itself a decay product of uranium. Radon in turn breaks down into radon decay products, short-lived radionuclides. These decay products, either free or attached to airborne particles, are inhaled, and further decay can take place in the lungs before removal by clearance mechanisms.
It is the emission of high-energy alpha particles during the radon decay process that increases the risk of lung cancer. While the risk to underground miners has long been known, the potential danger of residential radon pollution has been widely recognized only since the late 1970s, with the documentation of high indoor levels.
When radon decay products are inhaled and deposited in the lungs, the alpha emissions penetrate the cells of the epithelium lining the lung. Energy deposited in these cells during irradiation is believed to initiate the process of carcinogenesis. The EPA, the National Cancer Institute, the Centers for Disease Control and Prevention, and others estimate that thousands of lung cancer deaths per year are attributable to radon, based on data from epidemiologic studies of thousands of underground miners and from animal studies. Lung cancer is presently the only commonly accepted disease risk associated with radon.
Tobacco smoke in combination with radon exposure has a synergistic effect. Smokers and former smokers are believed to be at especially high risk. Scientists estimate that the increased risk of lung cancer to smokers from radon exposure is ten to twenty times higher than to people who have never smoked.
The EPA estimates that as many as six million homes throughout the country have elevated levels of radon. Since 1988, EPA and the Office of the Surgeon General have recommended that homes below the third floor be tested for radon.
Short term testing is the quickest way to determine if a potential problem exists, taking from two to ninety days to complete. Low-cost radon test kits are available by mail order, in hardware stores, and through other retail outlets62.
EPA recommends that consumers use measurement devices that are state-certified or have met the requirements of a proficiency program. For further information on EPA's former National Radon Proficiency Program (RPP) (EPA closed its National Radon Proficiency Program in 1998) visit our Radon web site www.epa.gov/radon/radontest.html  EPA also recommends that consumers use trained contractors who provide testing services. The most commonly used devices are charcoal canisters, electret ion detectors, alpha track detectors, and continuous monitors placed by contractors. Short term testing should be conducted in the lowest lived in area of the home, with the doors and windows shut. Long term testing can take up to a full year but is more likely to reflect the home's year round average radon level than short term testing. Alpha track detectors and electret ion detectors are the most common long-term testing devices.
Corrective steps include sealing foundation cracks and holes, and venting radon-laden air from beneath the foundation. Professional expertise should be sought for effective execution of these measures.
What is "multiple chemical sensitivity" or "total allergy"?
The diagnostic label of multiple chemical sensitivity (MCS) -- also referred to as "chemical hypersensitivity" or "environmental illness" -- is being applied increasingly, although definition of the phenomenon is elusive and its pathogenesis as a distinct entity is not confirmed. Multiple chemical sensitivity has become more widely known and increasingly controversial as more patients receive the label63.
Persons with the diagnostic label of multiple chemical sensitivity are said to suffer multi-system illness as a result of contact with, or proximity to, a spectrum of substances, including airborne agents. These may include both recognized pollutants discussed earlier (such as tobacco smoke, formaldehyde, et al.) and other pollutants ordinarily considered innocuous. Some who espouse the concept of MCS believe that it may explain such chronic conditions as some forms of arthritis and colitis, in addition to generally recognized types of hypersensitivity reactions.
Some practitioners believe that the condition has a purely psychological basis. One study63 reported a 65 percent incidence of current or past clinical depression, anxiety disorders, or somatoform disorders in subjects with this diagnosis compared with 28 percent in controls. Others, however, counter that the disorder itself may cause such problems64, since those affected are no longer able to lead a normal life, or that these conditions stem from effects on the nervous system65.
The current consensus is that in cases of claimed or suspected MCS, complaints should not be dismissed as psychogenic, and a thorough workup is essential. Primary care givers should determine that the individual does not have an underlying physiological problem and should consider the value of consultation with allergists and other specialists.
Who are "clinical ecologists"?
"Clinical ecology", while not a recognized conventional medical specialty, has drawn the attention of health care professionals as well as laypersons. The organization of clinical ecologists-physicians who treat individuals believed to be suffering from "total allergy" or "multiple chemical sensitivity" -- was founded as the Society for Clinical Ecology and is now known as the American Academy of Environmental Medicine. Its ranks have attracted allergists and physicians from other traditional medical specialties66.
What are ionizers and other ozone generating air cleaners?
Ion generators act by charging the particles in a room so that they are attracted to walls, floors, tabletops, draperies, occupants, etc. Abrasion can result in these particles being resuspended into the air. In some cases these devices contain a collector to attract the charged particles back to the unit. While ion generators may remove small particles (e.g., those in tobacco smoke) from the indoor air, they do not remove gases or odors, and may be relatively ineffective in removing large particles such as pollen and house dust allergens. Although some have suggested that these devices provide a benefit by rectifying a hypothesized ion imbalance, no controlled studies have confirmed this effect.
Ozone, a lung irritant, is produced indirectly by ion generators and some other electronic air cleaners and directly by ozone generators. While indirect ozone production is of concern, there is even greater concern with the direct, and purposeful introduction of a lung irritant into indoor air. There is no difference, despite some marketers' claims, between ozone in smog outdoors and ozone produced by these devices. Under certain use conditions ion generators and other ozone generating air cleaners (see www.epa.gov/iaq/pubs/ozonegen.html) can produce levels of this lung irritant significantly above levels thought harmful to human health. A small percentage of air cleaners that claim a health benefit may be regulated by FDA as a medical device. The Food and Drug Administration has set a limit of 0.05 parts per million of ozone for medical devices. Although ozone can be used in reducing odors and pollutants in unoccupied spaces (such as removing smoke odors from homes involved in fires) the levels needed to achieve this are above those generally thought to be safe for humans.
Can other air cleaners help?
Ion generators and ozone generators (see www.epa.gov/iaq/pubs/ozonegen.html) are types of air cleaners; others include mechanical filter air cleaners, electronic air cleaners (e.g., electrostatic precipitators), and hybrid air cleaners utilizing two or more techniques. Generally speaking, existing air cleaners are not appropriate single solutions to indoor air quality problems, but can be useful as an adjunct to effective source control and adequate ventilation. Air cleaning alone cannot adequately remove all pollutants typically found in indoor air.
The value of any air cleaner depends upon a number of factors, including its basic efficiency, proper selection for the type of pollutant to be removed, proper installation in relation to the space, and faithful maintenance. Drawbacks, varying with type, may include inadequate pollutant removal, re-dispersement of pollutants, deceptive masking rather than removal, generation of ozone, and unacceptable noise levels.
[At the time of this publication,] the EPA and CPSC had not taken a position either for or against the use of these devices in the home67. For more information on ozone generators, read the fact sheet: Ozone Generators That Are Sold As Air Cleaners (see www.epa.gov/iaq/pubs/ozonegen.html). The purpose of this document (which is only available via this web site) is to provide accurate information regarding the use of ozone-generating devices in indoor occupied spaces. This information is based on the most credible scientific evidence currently available.
Should I have my ducts cleaned?
As awareness of the importance of indoor air quality grows, more people are looking at duct cleaning as a way to solve indoor air quality problems. Individuals considering having ducts cleaned should determine that contaminated ducts are the cause of their health problems. Even when contaminants are found in ducts, the source may lie elsewhere, and cleaning ducts may not permanently solve the problem. The duct cleaning industry is expanding to meet demand, using extensive advertising to encourage people to use their services.
Individuals who employ such services should verify that the service provider takes steps to protect individuals from exposure to dislodged pollutants and chemicals used during the cleaning process. Such steps may range from using HEPA filtration on cleaning equipment, providing respirators for workers, and occupants vacating the premises during cleaning.
Can carpet make people sick?
Like many other household products and furnishings, new carpet can be a source of chemical emissions. Carpet emits volatile organic compounds, as do products that accompany carpet installation such as adhesives and padding. Some people report symptoms such as eye, nose and throat irritation; headaches; skin irritations; shortness of breath or cough; and fatigue, which they may associate with new carpet installation. Carpet can also act as a "sink" for chemical and biological pollutants including pesticides, dust mites, and fungi.
Individuals purchasing new carpet should ask retailers for information to help them select lower emitting carpet, cushion, and adhesives. Before new carpet is installed, they should ask the retailer to unroll and air out the carpet in a clean, well-ventilated area. They should consider leaving the premises during and immediately after carpet installation or schedule the installation when the space is unoccupied. Opening doors and windows and increasing the amount of fresh air indoors will reduce exposure to most chemicals released from newly installed carpet. During and after installation in a home, use of window fans and room air conditioners to exhaust fumes to the outdoors is recommended. Ventilation systems should be in proper working order, and should be operated during installation, and for 48 to 72 hours after the new carpet is installed.
Individuals should request that the installer follow the Carpet and Rug Institute's installation guidelines68. If new carpet has an objectionable odor, they should contact their carpet retailer. Finally, carpet owners should follow the manufacturer's instructions for proper carpet maintenance.
Can plants control indoor air pollution?
Recent reports in the media and promotions by the decorative houseplant industry characterize plants as "nature's clean air machine", claiming that National Aeronautics and Space Administration (NASA) research shows plants remove indoor air pollutants. While it is true that plants remove carbon dioxide from the air, and the ability of plants to remove certain other pollutants from water is the basis for some pollution control methods, the ability of plants to control indoor air pollution is less well established. Most research to date used small chambers without any air exchange which makes extrapolation to real world environments extremely uncertain. The only available study of the use of plants to control indoor air pollutants in an actual building could not determine any benefit from the use of plants69. As a practical means of pollution control, the plant removal mechanisms appear to be inconsequential compared to common ventilation and air exchange rates. In other words, the ability of plants to actually improve indoor air quality is limited in comparison with provision of adequate ventilation.
While decorative foliage plants may be aesthetically pleasing, it should be noted that over damp planter soil conditions may actually promote growth of unhealthy microorganisms.





http://www.epa.gov/iaq/pubs/hpguide.html